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Abstract 
Site-specific fertilizer plans are effective to reduce waste and costs, considering that farm soils are not spatially uniform due to 

a considerable the amount of biochemical interactions that rule nutrients availability. In Salvadorian soils, phosphorus is a 
limiting macro-nutrient and farmers often use diammonium phosphate (DAP) as a palliative amendment, however, they 

disregard spatial variability and therefore causing fertilizer misuse. In this research, 55 soil samples were taken from a 30 

hectare field and submitted to a lab to be treated with a dose of DAP in order to measure how much phosphate remained 

available through time in a root-free scenario. It was demonstrated that responses were not strictly proportional to the values of 

pH and Effective Cation-Exchange Capacity (ECEC), meaning that this variables were not sufficient to sustain traditional 

assumptions about phosphate availability across a field; the higher value of Pearson correlations for pH and ECEC data versus 

P availability measures was 0.4, and the maximum R2 was 0.21, indicating that a statistical predictive model was not trustable. 

To contribute for a better agronomic analysis, a predictive model of phosphate availability is proposed in this paper. Data 

obtained from treated samples was processed to produce semivariogram graphs which fitted at least one of the standard models 

of linear, circular or spherical patterns. This also indicated that Kriging interpolation was convenient for representing data and 

establishing predictive models. Then, GIS software was used to create maps that modeled the stage of P availability trough 

time. The contribution of this work is the proposal of geostatistical software tools to improve soil nutrients requirement 
analysis based on soil samples, allowing the modeling of an entire farmland for a more precise fertilizer plans development. 
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Introduction 
Phosphorus (P) is a vital nutrient for plants needed to carry 

out their biochemical reactions in a normal fashion. Its 

deficiency causes a remarkable loss of crop vigor, greatly 

reducing both yield quality and quantity (Sudara, Natarajan 

& Hari, 2002; Baker, Ceasar & Palmer, 2015) [67, 6]. Soils of 

El Salvador are generally poor in phosphorus (CENTA-

FAO, 1998; Escobar, 2004) [10, 18]. so it is a very limiting 

nutrient that must be added to agricultural soils in the form 
of organic or inorganic fertilizer. In addition to the problem, 

farmland fertility is not very well managed and their pH has 

decreased in the last decades to values ranging between 4.0 

and 5.5 (Muñoz, 2011) [51]. causing P immobilization 

(Füleky et al., 2006; Lee, et al., 2004; Memon et al., 1991; 

Sakadevan et al., 1998). [22, 37, 46].  
Due to these reasons, it is common that Salvadorian entities 

recommend the use of phosphate fertilizers (Rodríguez, et 

al., 2002; Basic Grain Program, 2013; Baker, Ceasar & 

Palmer, 2015) [60, 6].  
However, the lack of knowledge about how this nutrient 
behaves at field conditions, usually leads farmers to fertilize 

at inappropriate timing and dose (Paliza, 1979; Margenot, 

Singh, Rao & Sommer, 2016) [52, 45]. Many factors can alter 

P availability across a field, often seeming to be random. 

For example, flooding areas can become more acid for the 

accumulation of minerals (Achudume, 2007; Kato et al., 

1996; Qureshi, Hussain, Ismail & Khan, 2016) [2, 34, 58]. 

lowering pH and releasin aluminum (Al) that causes redox 

reactions that adsorb phosphates (Pant et al., 2002; Scanlan, 

Brennan, D’Antuono & Sarre, 2017) [54, 63]. In contrast, 

raising pH by liming can have a counter effect when soil is  

 

too humid because of forming highly adsorbing surfaces of 

aluminum, but instead favores 
Phosphate desorption when humidity is moderated, due to 

the crystallization of Al compounds (Haynes, 1982; 

Scanlan, Brennan, D’Antuono & Sarre, 2017) [28, 63]. This 

indicates that even slight variances on clay composition can 

vary the soil response to P fertilizers over a field. Another 

important factor is that high levels of Effective Cation 

Exchange Capacity (ECEC) also facilitates the desorption of 
P and nutrients in general, however, ECEC value also tends 

to have considerable spatial variability for many reasons 

such as microbial activity, clay composition, flooding events 

and organic matter content (Grant, 2018; Liang et al., 2006; 

Schalscha et al., 1974; Hendershot et al., 1993). As reported 

by Antello et al. (2007) [24, 39, 64, 31, 5].  
enriched presence of decaying organic matter produces 

humic acids that compete against phosphate for adsorption 

in the exchange sites, increasing availability of this nutrient 

after fertilization. 
With the use of a GIS software, it is possible to create 
geographical models to identify site-specific requirements 

of fertilizers, helping the decision making process which 

otherwise would be very imprecise (Denton, Aduramigba-

Modupe, Ojo, Adeoyolanu, Are, Adelana & Oke, 2017; 

Rogowski, 1996) [15, 61].  
The creation of a predictive model of nutrient availability is 

possible by taking georeferenced soil samples to experiment 

different fertilizer doses in a laboratory, then measure their 

responses to create a representative model of an actual 

farmland. This technique can provide important information 

for a better estimation of fertilizer needs, the period of time 
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during which nutrients will be available for plants, 

especially if it is planned to be incorporate major treatments 

such as aglime. This paper describes the use of software 

tools for variogram creation, Kriging interpolation and 

statistical analysis to discuss the results. 
 

Materials and Methodology 
Soil Sampling 
The amount of 55 samples were taken from a 34 hectare 

farm land located in Santa Ana, El Salvador. Prior soil 

analysis revealed that actual nutrient availability was 

relatively uniform across the majority of the area. Sampling 

method corresponded to a predesigned grid pattern of four 

parallel transects (Fig. 1.A) according to the slope curvature 

as indicated by Gregorich & Carter (2007) [25]. Similar to the 

methodologies used by Walvoort et al. (2010), Ching et al. 

(2009), Cockx et al. (2007) and Fox & Protz (1981) [71, 11, 13, 

21]. each sample was composed by 10 subsamples that were 

taken in a circular pattern of 20 meters diameter.  
For extracting the soil at field capacity, a metallic tube of 10 

cm diamater was used, deepening it until collecting 1 Kg of 

soil as done by López-Granados et al. (2002) [42,43]. then 

mixing those sub samples to obtain a final homogeneous 

portion of 2 Kg, labeled as a sample and recording its 

correlative number, GPS coordinates and altitude.  
The whole set of samples was named as “S” series and then 

each of them was divided by half to create 2 new sub series, 

“P0” and “P”, equal in all properties. 
 

Inorganic Phosphorus test with DAP 
Values of pH, ECEC and available phosphate were 

measured for each P0 sample, to determine natural 

conditions.  
Each sample of the “P” sub series was divided in three sub 

samples “P-10”, “P-20” and “P-30”, and then applied with 

257 mg of diammonium phosphate previously diluted in 10 

ml of distilled water.  
This treatment was based in the traditional fertilization dose 

used in El Salvador of 257 Kg per hectare, which amounts 

to 25.7 grams distributed over the area of one square meter, 

which corresponds to 257 mg per each 100 cm2 of sampling 

area.  
Testing traditional doses of fertilizer has been reported as 

convenient for nutrient efficiency analysis (Szulc et al., 

2016; Amarasinghe et al., 2014; Weijabhandara et al., 2011; 

Magomedov et al., 2010; Kumar et al., 2009 and Abdoulaye 

& Sanders, 2005) [68, 4, 72, 44, 35, 1].  
To determine how much of the phosphate reremained 

available through time, laboratory measures were performed 

over P-10, P-20 and P-30, ten days, 20 days and 30 days 

respectively after treatment.  
 

Data analysis 
Statistical software Statgraphics® 18 and GNU/PSPP 1.2 

were used to compare relationships of pH and ECEC of 

“P0” versus phosphorus availability of the “P” sub series. 

Data of each sample was tabulated according to its 

correlative of the “S” series, in other words, unifying data of 

“P0” and “P”, using the following variables: sample id, 

latitude, longitude, terrain altitude, pH, ECEC, phosphate 

concentration at initial conditions, phosphate concentration 

at 10 days (P-10), 20 days (P-20) and 30 days (P-30) after 

treatment.  
Relationships were analyzed performing regressions 

between variables, obtaining the Coefficients of 

Determination and Pearson Correlations. Then geostatistical 

analysis with semi-variograms using VESPER Software 

(Bernardi et al. 2016; Molin & Faulin, 2013; Whelan et al., 

2002) [7, 49, 73]. was performed to validate the possibility of a 

GIS predictive model. Finally, the software QGIS 3.4 and 

SAGA GIS 7, were used to interpolate variability maps with 

the Kriging algorithm that represent a predictive soil 
response to phosphate treatment, in accordance with the GIS 

models discussed by Pandey et al. (2009), Hlaing et al. 

(2008), Erdogan et al. (2007), Scull et al. (2003) and Zhu et 

al. (2001) [53, 32, 17, 65, 78]. 
 

Results and Discussion 
Prior soil analysis revealed the fertility conditions of the 

farmland, indicating that pH, Cu, Zn and Na were low, 

while ECEC, P, K, Mn, Fe and Al were medium, and B, Ca, 

Mg, S and M.O. content were high (Table 1). 
Although the average phosphorus availability among P-10, 
P-20 and P-30 samples showed little variability trough time 

(Table 2), normality tests suggest otherwise. Kurtosis levels 

indicated awide dispersion among the data in P-10 and P-20, 

both of which could be represented by a platykurtic curve. 

Also, the P-10 values had a distribution with a slightly 

negative skewness (-0.30), while the P-20 values have a 

moderate negative skewness (-0.72). On the other hand, P-

30 has a very slightly positive skewness distribution (0.18). 

This tests indicated very little normality on collected data. 

Likewise, pH and ECEC had also very little normality. This 

coincides with the findings of Lobell & Burke (2010) and 
Minasny & McBratney (2007), [41, 48]. who determined that 

conventional statistical calculations are not sufficient to 

model the values of spatial variability in soils.    
 

Table 1: Results of initial soil test 
 

Mo pH ECEC P K Ca Mg S Cu Mn B Fe Zn Na Al 
%  (meq/c) (ppm) 
4.8 4.6 10.5 22 91 1665 265 180 2 13 0.7 50 2.5 121 81 
Source: Own elaboration with field data. 

  
Table 2: Descriptive statistics for soil variables 

 

 pH ECEC P0 P-10 P-20 P-30 
Mean 4.28 10.25 24.93 54.8 54.98 56.28 

CV (%) 14.04 8.15 5.93 22.09 30.78 23.99 
Kurtosis -1.33 0.3 0.19 -0.27 0.92 -0.12 

Skewness -0.22 0.95 0.32 -0.3 -0.72 0.18 
Range 1.99 3.1 5.7 46.34 73.99 52.99 

Minimum 3.17 9 22.4 29.96 9.31 33.11 
Maximum 5.16 12.1 28.1 76.3 83.3 86.1 
Source: Own elaboration. 

 

The Pearson correlation coefficients (Table 3) among the 

variables showed no significance, having maximum positive 

correlations for pH and “P” series in ranges from -0.15 to 

0.40, and between ECEC and “P” series, all being negative 

in ranges from -0.45 to -0.26, indicating a non existent 

relationship. Likewise, the analysis of the coefficients of 

determination, R2 and adjusted R2 (Table 4), showed that the 
changes in pH and ECEC are not good response predictors, 

invalidating the reliability of regression models. In the same 

way, Petrone, Price and Carey (2004) [56]. demonstrated that 

the lack of understanding about spatial variability of soils 

makes difficult to create a predictive model, due to the fact 

that soil reactions are not only determined by the interaction 
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of just one or two variables. To determine the existing 

correlations in this case, geostatistical analysis was needed 

(Miller, Singer & Nielsen, 1988; Bocca, Morbidelli, Melone 

& Moramarco, 2007), [47, 9]. prefearably using semivariance 

analysis and kriging interpolation to model the soil 

responses.  
Table 3: Pearson Correlation of variables 

 

 pH ECEC P-10 P-20 P-30 P0 
pH - -0.44 -0.15 -0.28 -0.21 0.40 

ECEC -0.44 - -0.41 -0.26 -0.45 -0.35 
P-10 -0.15 -0.41 - 0.78 0.54 -0.28 
P-20 -0.28 -0.26 0.78 - 0.52 -0.11 
P-30 -0.21 -0.45 0.54 0.52 - 0.04 
P0 0.40 -0.35 -0.28 -0.11 0.04 - 

Source: Own elaboration 
 

Table 4: Regression data of ECEC vs available P 
 

 ECEC vs P available pH vs P available 
Tests R2 R2 adjusted R2 R2 adjusted 

P0 0.04 0.00 0.06 0.02 
P-10 0.20 0.16 0.01 -0.03 
P-20 0.02 -0.02 0.20 0.16 
P-30 0.08 0.04 0.21 0.18 

Source: Own elaboration. 
 

The best fit for pH semivariogram was the exponential 

model (Fig. 1.B), meaning that the soil acidity values 

gradually reached the sill and the relationship among 

sampling points existed in distances of no more than 100 

meters. ECEC exhibited the pattern of a semivariance linear 

mod model (Fig. 1.C), meaning that the spatial variability 

increased linearly across distance but having no plateau and 
therefore there is no exact point of distance from which the 

data can be calculated to be properly correlated. That is the 

same case of P-10 (Fig. 1.D), in which the semivariance 

showed very high amplitude at any distance, also indicating 

that soil responses to fertilization are not correlated even in 

distances of less than 100 meters. The P-20 measures 

showed a circular model tendency (Fig. 1.E), indicating a 

very high variance at the asymptotic level after range of 

252.2 meters, however, the semivariance algorithm was 

capable to determine correlation between the points situated 

before that range value. There is a similar case for P-30 
because the graph exhibited a spherical model tendency 

with a flattening of spatial dependence after the range of 

165.1 meters (Fig. 1.F), also finding a correlation despite of 

the relative dispersion of the data. All of these computer 

tests, demonstrated the high spatial variability of the soil, 

but also showing evidence of the possibility for a predictive 

model for fertilizer treatments using semivariance analysis 

as a prior step for Kriging interpolation. As previously 

suggested, phosphate availability could not only be altered 

by low pH and poor ECEC as general indicators of soil 

fertility as sometimes suggested (Ahmad et al., 2011; 

Fageria & Barbosa, 2008; Haefele et al., 2014) [3, 19 27]. but 
instead by a large number of different factors among which 

the most probable were the interaction among oxide types of 

Al and Fe (Haynes & Mokolobate, 2001; Devau et al., 

2009) [29, 16]. the amount and type of Ca molecule present, 

principally in the form of CaCO3 (Hopkins & Ellsworth, 

2005; Coelho et al. 2004; Smyth & Sanchez, 1980) [33, 14, 66]. 

as in the case of the soil used for this study in which pH was 

low despite of the high availability of Ca. Other important 

factors are: the amount of C and the biological activity 

(Liptzin & Silver, 2009; Parvage et al. 2013; Giardina et al., 

1995) [40, 55, 23]. the role of P on CH4 and NH4 oxidation 

(Zhang et al. 2011; Veraart et al., 2015; Phillips, 1998), the 

soil-water interaction (Boomer & Bedford, 2008; He et al., 

2006; Gutiérrez-Boem & Thomas, 1998) [76, 70, 57, 8, 26]. the 

CO2 proceeding from atmosphere and organic matter 

decomposition (Wieder et al. 2008; Cleveland et al., 2006; 

Zang et al., 2014) and sulphur oxidation (Miransari, 2010; 
Rajan, 1983) [74, 12, 77, 59, 62, 59]. Due to all of these 

complexities, maps modeling based on ordinary Kriging 

interpolation is a rapid and feasible way to establish 

predictive analysis of soil-fertilizer responses on a short 

distance grid scale (Tripathi et al., 2015; Li, 2010; Yasrebi 

et al., 2009; Mueller et al., 2004; Lark & Ferguson, 2004). 
[69, 38, 75, 50, 36]. 
 

 
 

Fig 1: Sampling points of terrain and semivariograms of soil pH, 
ECEC, phosphate available 10 days after treatment (P-10), after 20 

days (P-20) and after 30 days (P-30). 
 

After interpolating values of each study variable, contour 

lines with colored areas were generated (Fig. 2 and 3) for a 

more understandable representation of the spatial variability. 
The values of pH presented on Fig. 2.B, tended to slightly 

increase in the same direction of the slope drainage on Fig 

2.A, while the ECEC on Fig. 2.C decreases. The actual 

value of phosphate availability or average “P0” (Fig. 2.D) 

was higher in areas with less acidity and more ECEC. The 

results of the experiment indicated that the predictive 

distribution of phosphate availability 10 days after 

fertilization or “P-10” (Fig. 3.A) is superior en areas with 

greater ECEC than pH. Low adsorption and the root-free 

scenario on “P-20” caused phosphate concentration to stay 

high for 20 days (Fig. 3.B), even experiencing a slight 
increase in the areas with the lowest pH. The values 

obtained 30 days after fertilization or “P-30” (Fig. 3.C), 

were similar in proportion with the ones obtained at natural 

conditions “P0”, but with magnitudes about twice as big. 

While there were no roots removing nutrients from the 
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samples, the available phosphate remained increased during 

a month.  
 

 
 

Fig 2: Spatial variability maps of natural conditions of altitude (A), 
pH (B), ECEC (C) and current phosphate availability (P0) 

expressed in ppm. 
 

 
 

Fig 3: Predictive maps elaborated with data from the experiment, 
measuring phosphate availability in ppm in three different 

moments after fertilization: 10 days lapse (A), 20 days lapse (B) 
and 30 days lapse(C). 

 

Conclusion 
The integration of GIS tools has allowed us to develop soil 
surveys in a much more efficient way, reducing the time 

consumption and increasing the detail of phosphate behavior 

in soil which is not only in proportional funcion of pH and 

CEC, indicating that these two variables are not enough to 

predict the response of a farm soil to fertilizers. Despite of 

the high concentrations of Ca and Mg, the studied soil was 

very acid but with a good ECEC that allows good phosphate 

availability even a month after fertilization.  
Treating georeferenced samples of a soil in order to obtain 

data from their responses and then processing the data using 

Kriging algorithm in a GIS software, is not only proper for 

adequating more site-specific agronomy management plants 
but also a constitute a practical and reliable tool for cases in 

which traditional statistics fail and deepening in the 

complexity of chemical soil reactions is not feasible.  
This constitutes a very convenient, productive and trustable 

use of technology for academia and farmland owners, to 

take advantage of geostatistical and laboratory produced 

data. With the use of GIS, we managed to interpret the 

results from series of soil samples in order to build a 

bidimensional model that can be understandable by all 

audiences, allowing agriculture processionals or 

practitioners to improve fertilization plans in terms of 

nutrients requirements and their availability trough time, 

therefore increase their effectiveness while also reducing 

costs and waste of agrochemicals while also diminishing 

environmental impact. 
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